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Abstract
Exploring the association between the
electrocardiogram (ECG) and cardiac  magnetic

resonance (CMR)-derived features may enhance our
understanding of cardiovascular physiology. We aimed to
identify clusters of individuals without diagnosed
cardiovascular disease (CVD) based on their ECG
phenotypes in an unsupervised manner and evaluate their
cardiac anatomical differences through CMR.

Spatial and single-lead ECG markers were calculated
from 10-second 12-lead ECGs from 51,974 UK Biobank
individuals without diagnosed CVD. A k-means clustering
model grouped individual ECG phenotypes into k clusters.
Statistical analyses were conducted to assess ECG,
demographic and CMR differences across clusters.

Three distinct ECG-based clusters were identified
(N1=19,470, N2=22,256, N3=8,997), with significant
differences in ECG morphology and CMR-derived
anatomical features. The most discriminative ECG
features involved ventricular repolarization in precordial
leads (i.e., T- and ST-segment amplitude). Cluster-specific
electro-anatomical alignment was stronger in Cluster 3.

Our findings show that ECG phenotyping through
unsupervised clustering can reveal anatomical cardiac
differences. Future work will evaluate the association with
incident risk of each of these clusters.

1. Introduction

Cardiac magnetic resonance (CMR) is considered the
gold standard for evaluating cardiac morphology and
function[1], providing detailed insights into ventricular
volumes, myocardial mass, and atrial remodeling.
However, it’s complexity and cost limit its use for large-
scale screening. In contrast, the electrocardiogram (ECQG)
is inexpensive, widely available and can reflect structural
and functional abnormalities[2].

Previous studies have explored associations between
individual ECG features and structural measurements
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derived from CMR, such as QRS duration prolongation
[3], Sokolow-Lyon voltage criterion[3] and QRS complex
fragmentation[4]. For instance, Q waves have been linked
to infarct size and location, while ST-segment elevation
correlates with transmural ischemia and myocardial area at
risk [5,6]. These findings suggest that ECG patterns
provide insight into regional myocardial remodeling and
disease.

ECG-based unsupervised clustering has mainly been
used to reveal novel phenotypic subgroups in specific
disease populations [7], including patients with coronary
artery disease [8,9] and hypertrophic cardiomyopathy [10],
some of which show distinct CMR profiles and increased
cardiovascular risk [7—11]. However, such approaches
have not yet been explored in the general population. This
could aid in detecting subclinical cardiac variation and
support early, low-cost screening of asymptomatic
individuals.

We hypothesized that there are subgroups of individuals
without diagnosed cardiovascular diseases (CVD) who
have distinct ECG-based phenotypes, and each are
exhibiting significant differences in cardiac anatomy. In
this study, we applied unsupervised clustering to identify
ECG-based phenotypic clusters and evaluate their
anatomical characteristics through CMR features.

2. Methods

2.1. UK Biobank Cohort

The UK Biobank (UKB) is a large-scale cohort of
individuals from the United Kingdom [11]. Our study
population included 51,974 individuals without diagnosed
CVD, who participated in the UKB CMR Imaging study
and had a 10-second 12-lead ECG recorded at rest. This
work was conducted under application number 2964.

2.2. ECG Biomarkers
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ECG signal pre-processing and the computation of
median heartbeats per lead were performed following the
methodology described in [9]. A set of biomarkers was
extracted from each median heartbeat in the eight
independent leads (I, II, V1-V6), including both standard
and advanced ECG features [9]. In addition, P-wave
morphology was characterized using Hermite functions[9],
applying two different basis functions for P- and T-wave
reconstruction and four for the QRS complex. Features
such as reconstruction error and waveform width were
additionally included as markers. A total of 29 ECG-
related markers were obtained from each median heartbeat
per lead. Beyond single-lead features, we derived 8 spatial
features, including QT dispersion, QRS-T angle [12] and
P-wave loop characteristics [13]. Additionally, the RR-
interval was included, making a total of 241 biomarkers.
Signal processing analyses were performed using
MATLAB (version R2022b).

2.3. Identification of Clusters

After removing ECG features that had a strong
Spearman correlation (r>0.8) with multiple other features
and those with missing data (>10%). Then, missing values
were imputed using k-nearest neighbors’[14], and to
account for potential confounding, the remaining ECG
features were adjusted for age, sex, and body mass index
(BMI) using multivariable linear regression models. The
resulting residuals were standardized and used in the
subsequent analyses.

The optimal number of clusters was determined using a
grid search approach, evaluating the elbow method for k-
means clustering algorithm across 2 to 10 clusters. The

optimal number of clusters ‘k’ was determined by selecting
the value that minimized the sum of squared errors
distances. Finally, a k-means clustering algorithm was
employed to categorize individuals into k clusters based on
their ECG features. Clustering analysis were performed
using MATLAB (version R2022b).

2.4.  Statistical Analyses

We compared ECG, cardiovascular risk factors (age,
sex, smoking status, alcohol consumption, BMI, systolic
and diastolic blood pressure [SBP, DBP]) and ventricular
CMR[1] features across each cluster. To compare
continuous variables, we applied the Kruskal Wallis test,
reported as median [interquartile range (IQR)]. Categorical
features were analyzed using the Chi-square test, described
as numbers [percentages].

The contribution of ECG features to the clustering
process was assessed using a random forest model with
500 trees. The most representative ECG features identified
by the random forest model were further investigated to
assess their relationship with cardiac anatomical
parameters derived from CMR within each cluster. To do
so, multivariable linear regression models were fitted
separately for each cluster, allowing exploration of
subgroup-specific associations. For each model, we report
coefficient of determination (R?), Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE). The Chow
test was used to determine whether the relationships
between ECG and CMR features differed significantly
across clusters by testing for structural breaks in the
regression models. Specifically, we assessed whether the
regression coefficients for each cluster were statistically

Table 1. Cardiovascular risk factors and CMR characteristics in the study population and in each cluster.

Bonferroni
Characteristic All (N=51,974) (ISl=uls9t,e4r7})) (§l=uzs2t’e2r5z) (Clegf;;% corrected P
Value
Cardiovascular risk factor

Male sex, no. [%] 23021 454% | 8675 44.6% | 10192 458% | 4154 46.2% 0.01
Age, yr 65 11.0 64 12.0 65 11.0 65 12.0 <0.001
BMI, kg/m? 25.8 5.4 25.56 5.4 25.8 5.3 26.2 5.6 <0.001
SBP, mmHg 139 25.5 137 25.0 139 25.5 142 26.0 <0.001
DBP, mmHg 78.5 13.5 78.5 14.0 78.5 13.5 80.5 14.0 <0.001
Diabetes, no. [%] 2284  4.5% 788 4.1% 943 4.2% 553 6.2% <0.001

Smoker, no. [%] 1755 3.5% 692 3.6% 770 3.5% 293 3.3% 0.45
Alcohol, no. [%] 8468 16.7% | 3400 17.5% | 3534 15.9% 1534 17.1% <0.001

CMR

LVEDV, ml 141.2 44.6 140.8 43.6 140.9 448 142.9 46.0 <0.001

LVESV, ml 56.2 23.5 56.0 23.0 56.3 23.5 56.5 24.6 0.20
LVM, g 81.0 313 79.8 30.4 80.9 31.1 83.6 339 <0.001
LVMVR, g/ml 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 <0.001
RVEDV, ml 149.7 51.0 151.2 50.8 149.1 51.8 148.3 50.2 <0.001
RVESV, ml 63.3 28.2 64.5 28.6 62.6 284 62.2 27.5 <0.001
WT, mm 9.2 2.1 9.1 2.1 9.1 2.0 9.4 2.2 <0.001

BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, CMR: cardiac magnetic resonance, LVM: left ventricular
mass, LVMVR: left ventricular mass to volume ratio, LV: left ventricular, RV: right ventricular, EDV: end-diastolic volume, ESV: end-systolic

volume, WT: wall thickness.
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Figure 1. Median ECG representing each cluster for each independent lead.

different, using the first cluster as reference. P-values were
adjusted using Bonferroni correction.

3. Results

The study population exhibited a median age of 65 [12]
years and a balanced gender distribution (45.39% males,
Table 1). For each individual, a total of 241 standard and
advanced ECG features were calculated. After applying
feature selection, 187 adjusted ECG features were input in
a k-means clustering algorithm (k=4), resulting in 4
clusters with distinct ECG phenotypes. Cluster 1 included
19,470 individuals; cluster 2: 22,256; cluster 3: 8,997 and
cluster 4: 1,253.

Clusters 1-3 had a balanced gender distribution (~45%
males), whereas cluster 4 had a higher proportion of males
(70.5%). Moreover, individuals in cluster 4 were, on
average, five years older compared to clusters 1-3. Clusters
3 and 4 exhibited higher BMI (~26.3 [5.5] kg/m?), higher
prevalence of diabetes (6.2% and 9.0%, respectively) and
higher SBP and DBP (~143 [25] mmHg and 80 [14]
mmHg), compared to clusters 1 and 2.

Figure 1 displays the median heartbeat of each
independent lead across the identified clusters. Cluster 4
demonstrated  clear  morphological  abnormalities,
potentially representing underdiagnosed CVD, and was
therefore excluded from further analyses. Cluster 3 had the
shortest RR interval 1006 [226] ms, the highest QT
dispersion (68 [68] ms), and the widest QRS-T angle
(41.39 [59.34] ).

Random forest analyses highlighted several ECG

features as the most important in determining cluster
membership, including T-wave amplitude (lead V2), T-
wave Hermite basis function 1 (lead V1), ST-segment
amplitude (lead V1), TMV index (lead V6), and QRS
amplitude (lead V1). These ECG features, adjusted for age,
sex and BMI and represented as residuals, were
subsequently taken forward into multivariable regression
analyses to assess their association with CMR-derived
anatomical parameters.

Analysis of CMR features showed that Cluster 3 had the
highest left ventricular end-diastolic volume (LVEDV,
142.9 [46.0] ml), left ventricular end-systolic volume
(LVESV, 56.5 [24.6] ml), left ventricular mass (LVM,
83.6 [33.9] g/m?) and wall thickness (WT, 9.4 [2.2]mm,
Table 1). Cluster 1 exhibited the highest right ventricular
end-diastolic volume (RVEDV, 151.2 [50.8] ml), and right
ventricular end-systolic volume (RVESYV, 64.5 [28.6] ml).

Multivariable linear regression analyses regarding the
contribution of CMR features in determining the ECG
features revealed that few CMR features were significantly
associated with specific ECG features, and these
associations were cluster-dependent (Table 2). However,
the models had limited explanatory power, having a higher
R?in cluster 3. No association was found with LVEDV and
left ventricular mass to volume ratio LVMVR.

4. Discussion and Conclusions

The main finding of this study is the identification of
three distinct ECG-based clusters among a population of
over 51,000 individuals without diagnosed CVD in the
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Table 2. Contribution of anatomical CMR features
within each cluster.

ECG Cluster R? MAE | RMSE P
feature Value
T wave Cluster 1 0.01 0.47 0.63

amplitude | Cluster2 | 0.03 0.74 0.95 <0.001
Lead V2 | Cluster 3 | 0.08 0.70 0.95 <0.001
ST Cluster 1 | 0.01 0.51 0.67
amplitude | Cluster2 | 0.02 0.61 0.83 <0.001
Lead VI | Cluster3 | 0.10 0.80 1.15 <0.001
Cluster 1 | 0.01 0.34 0.49
Lgi\(/il\\//6 Cluster 2 | 0.01 0.34 0.46 0.01
Cluster 3 | 0.03 1.11 1.67 <0.001
QRS Cluster 1 | 0.02 0.54 0.70
Amplitude | Cluster2 | 0.03 0.75 0.98 <0.001
Lead V1 Cluster 3 | 0.09 0.87 1.14 <0.001
T-wave Cluster 1 | 0.01 0.51 0.71
Hermite Cluster 2 | 0.01 0.81 0.91 <0.001
lezze\}l Cluster3 | 0.02 | 090 | 1.00 | <0.001

R coefficient of determination, MAE: mean absolute error, RMSE:
root mean squared error.

UKB Imaging study, using unsupervised clustering and
evaluating the degree of electro-anatomical alignment
within each cluster. These clusters showed significant
differences in ECG morphology and anatomical features.

Individuals in cluster 3 showed greater dispersion of
ventricular repolarization and associated with higher left
ventricular volumes, ejection fractions, myocardial mass,
and increased wall thickness. Cluster 1, in contrast, was
characterized by lower QRS and T-wave amplitudes and
higher right ventricular volumes, while cluster 2 had higher
ST-segment deviation but intermediate CMR features.

The ECG features that most strongly distinguished the
clusters were primarily related to ventricular repolarization
(T-wave amplitude, ST-segment, TMV index) particularly
in the precordial leads. This highlights the importance of
incorporating full 12-lead ECG data when exploring
cardiac phenotypes. Furthermore, abnormalities in
ventricular repolarization have been previously associated
with an increased arrhythmic risk[9,16]. Therefore, the
presence of distinct repolarization patterns across clusters
may not only reflect underlying structural variation but
also carry potential prognostic implications.

The degree to which these ECG features could be
explained by structural CMR markers varied across
clusters, with Cluster 3 demonstrating the strongest
electro-anatomical alignment. This may suggest that
individuals in Cluster 3 exhibit patterns of
electromechanical remodeling, possibly reflecting early or
subclinical stages of cardiovascular adaptation or,
alternatively, a more efficient and physiologically
integrated cardiac phenotype. Considering this, further
studies should determine whether such alignment reflects
beneficial adaptation or emerging risk.

Among the limitations, the identified clusters represent

descriptive, hypothesis-generating phenotypes, and the
predominance of White-European ancestry in the UKB
cohort limits the generalizability of the findings.

Future work should explore the longitudinal
implications of these clusters, assess their prognostic
value, and investigate the integration of ECG phenotypes
with other clinical data to enhance cardiovascular risk
prediction. Finally, external validation should be done.
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