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Abstract 

Exploring the association between the 
electrocardiogram (ECG) and cardiac magnetic 
resonance (CMR)-derived features may enhance our 
understanding of cardiovascular physiology. We aimed to 
identify clusters of individuals without diagnosed 
cardiovascular disease (CVD) based on their ECG 
phenotypes in an unsupervised manner and evaluate their 
cardiac anatomical differences through CMR. 

Spatial and single-lead ECG markers were calculated 
from 10-second 12-lead ECGs from 51,974 UK Biobank 
individuals without diagnosed CVD. A k-means clustering 
model grouped individual ECG phenotypes into k clusters. 
Statistical analyses were conducted to assess ECG, 
demographic and CMR differences across clusters. 

Three distinct ECG-based clusters were identified 
(N1=19,470, N2=22,256, N3=8,997), with significant 
differences in ECG morphology and CMR-derived 
anatomical features. The most discriminative ECG 
features involved ventricular repolarization in precordial 
leads (i.e., T- and ST-segment amplitude). Cluster-specific 
electro-anatomical alignment was stronger in Cluster 3. 

Our findings show that ECG phenotyping through 
unsupervised clustering can reveal anatomical cardiac 
differences. Future work will evaluate the association with 
incident risk of each of these clusters. 
 
1. Introduction 

Cardiac magnetic resonance (CMR) is considered the 
gold standard for evaluating cardiac morphology and 
function[1], providing detailed insights into ventricular 
volumes, myocardial mass, and atrial remodeling. 
However, it’s complexity and cost limit its use for large-
scale screening. In contrast, the electrocardiogram (ECG) 
is inexpensive, widely available and can reflect structural 
and functional abnormalities[2].  

Previous studies have explored associations between 
individual ECG features and structural measurements 

derived from CMR, such as QRS duration prolongation 
[3], Sokolow-Lyon voltage criterion[3] and QRS complex 
fragmentation[4]. For instance, Q waves have been linked 
to infarct size and location, while ST-segment elevation 
correlates with transmural ischemia and myocardial area at 
risk [5,6]. These findings suggest that ECG patterns 
provide insight into regional myocardial remodeling and 
disease. 

ECG-based unsupervised clustering has mainly been 
used to reveal novel phenotypic subgroups in specific 
disease populations [7], including patients with coronary 
artery disease [8,9] and hypertrophic cardiomyopathy [10], 
some of which show distinct CMR profiles and increased 
cardiovascular risk [7–11]. However, such approaches 
have not yet been explored in the general population. This 
could aid in detecting subclinical cardiac variation and 
support early, low-cost screening of asymptomatic 
individuals. 

We hypothesized that there are subgroups of individuals 
without diagnosed cardiovascular diseases (CVD) who 
have distinct ECG-based phenotypes, and each are 
exhibiting significant differences in cardiac anatomy. In 
this study, we applied unsupervised clustering to identify 
ECG-based phenotypic clusters and evaluate their 
anatomical characteristics through CMR features. 

 
2. Methods 

2.1. UK Biobank Cohort  

The UK Biobank (UKB) is a large-scale cohort of 
individuals from the United Kingdom [11]. Our study 
population included 51,974 individuals without diagnosed 
CVD, who participated in the UKB CMR Imaging study 
and had a 10-second 12-lead ECG recorded at rest. This 
work was conducted under application number 2964.  

 
2.2. ECG Biomarkers 
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ECG signal pre-processing and the computation of 
median heartbeats per lead were performed following the 
methodology described in [9]. A set of biomarkers was 
extracted from each median heartbeat in the eight 
independent leads (I, II, V1–V6), including both standard 
and advanced ECG features [9]. In addition, P-wave 
morphology was characterized using Hermite functions[9], 
applying two different basis functions for P- and T-wave 
reconstruction and four for the QRS complex. Features 
such as reconstruction error and waveform width were 
additionally included as markers. A total of 29 ECG-
related markers were obtained from each median heartbeat 
per lead. Beyond single-lead features, we derived 8 spatial 
features, including QT dispersion, QRS-T angle [12] and 
P-wave loop characteristics [13]. Additionally, the RR-
interval was included, making a total of 241 biomarkers. 
Signal processing analyses were performed using 
MATLAB (version R2022b). 

 
2.3. Identification of Clusters 

After removing ECG features that had a strong 
Spearman correlation (r>0.8) with multiple other features 
and those with missing data (>10%). Then, missing values 
were imputed using k-nearest neighbors’[14], and to 
account for potential confounding, the remaining ECG 
features were adjusted for age, sex, and body mass index 
(BMI) using multivariable linear regression models. The 
resulting residuals were standardized and used in the 
subsequent analyses.  

The optimal number of clusters was determined using a 
grid search approach, evaluating the elbow method for k-
means clustering algorithm across 2 to 10 clusters. The 

optimal number of clusters ‘k’ was determined by selecting 
the value that minimized the sum of squared errors 
distances. Finally, a k-means clustering algorithm was 
employed to categorize individuals into k clusters based on 
their ECG features. Clustering analysis were performed 
using MATLAB (version R2022b). 

 
2.4. Statistical Analyses 

We compared ECG, cardiovascular risk factors (age, 
sex, smoking status, alcohol consumption, BMI, systolic 
and diastolic blood pressure [SBP, DBP]) and ventricular 
CMR[1] features across each cluster.  To compare 
continuous variables, we applied the Kruskal Wallis test, 
reported as median [interquartile range (IQR)]. Categorical 
features were analyzed using the Chi-square test, described 
as numbers [percentages].  

The contribution of ECG features to the clustering 
process was assessed using a random forest model with 
500 trees. The most representative ECG features identified 
by the random forest model were further investigated to 
assess their relationship with cardiac anatomical 
parameters derived from CMR within each cluster. To do 
so, multivariable linear regression models were fitted 
separately for each cluster, allowing exploration of 
subgroup-specific associations. For each model, we report 
coefficient of determination (R²), Mean Absolute Error 
(MAE) and Root Mean Squared Error (RMSE). The Chow 
test was used to determine whether the relationships 
between ECG and CMR features differed significantly 
across clusters by testing for structural breaks in the 
regression models. Specifically, we assessed whether the 
regression coefficients for each cluster were statistically 

Table 1. Cardiovascular risk factors and CMR characteristics in the study population and in each cluster. 

Characteristic All (N=51,974) Cluster 1 
(N=19,470) 

Cluster 2 
(N=22,256) 

Cluster 3 
(N=8,997) 

Bonferroni 
corrected P 

Value 
Cardiovascular risk factor                   

Male sex, no. [%] 23021 45.4% 8675 44.6% 10192 45.8% 4154 46.2% 0.01 
Age, yr 65 11.0 64 12.0 65 11.0 65 12.0 < 0.001 

BMI, kg/m2 25.8 5.4 25.56 5.4 25.8 5.3 26.2 5.6 < 0.001 
SBP, mmHg 139 25.5 137 25.0 139 25.5 142 26.0 < 0.001 
DBP, mmHg 78.5 13.5 78.5 14.0 78.5 13.5 80.5 14.0 < 0.001 

Diabetes, no. [%] 2284 4.5% 788 4.1% 943 4.2% 553 6.2% < 0.001 
Smoker, no. [%] 1755 3.5% 692 3.6% 770 3.5% 293 3.3% 0.45 
Alcohol, no. [%] 8468 16.7% 3400 17.5% 3534 15.9% 1534 17.1% < 0.001 

CMR                    
LVEDV, ml 141.2 44.6 140.8 43.6 140.9 44.8 142.9 46.0 < 0.001 
LVESV, ml 56.2 23.5 56.0 23.0 56.3 23.5 56.5 24.6 0.20 

LVM, g 81.0 31.3 79.8 30.4 80.9 31.1 83.6 33.9 < 0.001 
LVMVR, g/ml 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 < 0.001 
RVEDV, ml 149.7 51.0 151.2 50.8 149.1 51.8 148.3 50.2 < 0.001 
RVESV, ml 63.3 28.2 64.5 28.6 62.6 28.4 62.2 27.5 < 0.001 

WT, mm 9.2 2.1 9.1 2.1 9.1 2.0 9.4 2.2 < 0.001 
BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, CMR: cardiac magnetic resonance, LVM: left ventricular 
mass, LVMVR: left ventricular mass to volume ratio, LV: left ventricular, RV: right ventricular, EDV: end-diastolic volume, ESV: end-systolic 
volume, WT: wall thickness.  
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different, using the first cluster as reference. P-values were 
adjusted using Bonferroni correction. 

 
3. Results 
 

The study population exhibited a median age of 65 [12] 
years and a balanced gender distribution (45.39% males, 
Table 1). For each individual, a total of 241 standard and 
advanced ECG features were calculated. After applying 
feature selection, 187 adjusted ECG features were input in 
a k-means clustering algorithm (k=4), resulting in 4 
clusters with distinct ECG phenotypes. Cluster 1 included 
19,470 individuals; cluster 2: 22,256; cluster 3: 8,997 and 
cluster 4: 1,253.  

Clusters 1-3 had a balanced gender distribution (∼45% 
males), whereas cluster 4 had a higher proportion of males 
(70.5%). Moreover, individuals in cluster 4 were, on 
average, five years older compared to clusters 1-3. Clusters 
3 and 4 exhibited higher BMI (∼26.3 [5.5] kg/m2), higher 
prevalence of diabetes (6.2% and 9.0%, respectively) and 
higher SBP and DBP (∼143 [25] mmHg and 80 [14] 
mmHg), compared to clusters 1 and 2.  

Figure 1 displays the median heartbeat of each 
independent lead across the identified clusters. Cluster 4 
demonstrated clear morphological abnormalities, 
potentially representing underdiagnosed CVD, and was 
therefore excluded from further analyses. Cluster 3 had the 
shortest RR interval 1006 [226] ms, the highest QT 
dispersion (68 [68] ms), and the widest QRS-T angle 
(41.39 [59.34] o).  

Random forest analyses highlighted several ECG 

features as the most important in determining cluster 
membership, including T-wave amplitude (lead V2), T-
wave Hermite basis function 1 (lead V1), ST-segment 
amplitude (lead V1), TMV index (lead V6), and QRS 
amplitude (lead V1). These ECG features, adjusted for age, 
sex and BMI and represented as residuals, were 
subsequently taken forward into multivariable regression 
analyses to assess their association with CMR-derived 
anatomical parameters. 

Analysis of CMR features showed that Cluster 3 had the 
highest left ventricular end-diastolic volume (LVEDV, 
142.9 [46.0] ml), left ventricular end-systolic volume 
(LVESV, 56.5 [24.6] ml), left ventricular mass (LVM, 
83.6 [33.9] g/m2) and wall thickness (WT, 9.4 [2.2]mm, 
Table 1).  Cluster 1 exhibited the highest right ventricular 
end-diastolic volume (RVEDV, 151.2 [50.8] ml), and right 
ventricular end-systolic volume (RVESV, 64.5 [28.6] ml). 

Multivariable linear regression analyses regarding the 
contribution of CMR features in determining the ECG 
features revealed that few CMR features were significantly 
associated with specific ECG features, and these 
associations were cluster-dependent (Table 2).  However, 
the models had limited explanatory power, having a higher 
R² in cluster 3. No association was found with LVEDV and 
left ventricular mass to volume ratio LVMVR. 
 
4. Discussion and Conclusions  

The main finding of this study is the identification of 
three distinct ECG-based clusters among a population of 
over 51,000 individuals without diagnosed CVD in the 

 
Figure 1. Median ECG representing each cluster for each independent lead. 
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UKB Imaging study, using unsupervised clustering and 
evaluating the degree of electro-anatomical alignment 
within each cluster.  These clusters showed significant 
differences in ECG morphology and anatomical features. 

Individuals in cluster 3 showed greater dispersion of 
ventricular repolarization and associated with higher left 
ventricular volumes, ejection fractions, myocardial mass, 
and increased wall thickness. Cluster 1, in contrast, was 
characterized by lower QRS and T-wave amplitudes and 
higher right ventricular volumes, while cluster 2 had higher 
ST-segment deviation but intermediate CMR features. 

The ECG features that most strongly distinguished the 
clusters were primarily related to ventricular repolarization 
(T-wave amplitude, ST-segment, TMV index) particularly 
in the precordial leads. This highlights the importance of 
incorporating full 12-lead ECG data when exploring 
cardiac phenotypes. Furthermore, abnormalities in 
ventricular repolarization have been previously associated 
with an increased arrhythmic risk[9,16]. Therefore, the 
presence of distinct repolarization patterns across clusters 
may not only reflect underlying structural variation but 
also carry potential prognostic implications. 

 The degree to which these ECG features could be 
explained by structural CMR markers varied across 
clusters, with Cluster 3 demonstrating the strongest 
electro-anatomical alignment. This may suggest that 
individuals in Cluster 3 exhibit patterns of 
electromechanical remodeling, possibly reflecting early or 
subclinical stages of cardiovascular adaptation or, 
alternatively, a more efficient and physiologically 
integrated cardiac phenotype. Considering this, further 
studies should determine whether such alignment reflects 
beneficial adaptation or emerging risk.  

Among the limitations, the identified clusters represent 

descriptive, hypothesis-generating phenotypes, and the 
predominance of White-European ancestry in the UKB 
cohort limits the generalizability of the findings. 

Future work should explore the longitudinal 
implications of these clusters, assess their prognostic 
value, and investigate the integration of ECG phenotypes 
with other clinical data to enhance cardiovascular risk 
prediction. Finally, external validation should be done.  
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Table 2. Contribution of anatomical CMR features 
within each cluster. 

ECG 
feature Cluster R2 MAE RMSE P 

Value 
T wave 

amplitude  
Lead V2 

Cluster 1 0.01 0.47 0.63   
Cluster 2 0.03 0.74 0.95 <0.001 
Cluster 3 0.08 0.70 0.95 <0.001 

ST 
amplitude  
Lead V1 

Cluster 1 0.01 0.51 0.67   
Cluster 2 0.02 0.61 0.83 <0.001 
Cluster 3 0.10 0.80 1.15 <0.001 

TMV  
Lead V6 

Cluster 1 0.01 0.34 0.49   
Cluster 2 0.01 0.34 0.46 0.01 
Cluster 3 0.03 1.11 1.67 <0.001 

QRS 
Amplitude  
Lead V1 

Cluster 1 0.02 0.54 0.70   
Cluster 2 0.03 0.75 0.98 <0.001 
Cluster 3 0.09 0.87 1.14 <0.001 

T-wave 
Hermite 
Base 1 

Lead V1 

Cluster 1 0.01 0.51 0.71   
Cluster 2 0.01 0.81 0.91 <0.001 

Cluster 3 0.02 0.90 1.00 <0.001 
R2: coefficient of determination, MAE: mean absolute error, RMSE: 
root mean squared error. 
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